

Acknowledgement

First of all, I would like to express my sincere gratitude to my industry supervisors

Dr. Mirjam Fehling-Kaschek & Dr. Corinna Köpke , without whom I would not

have been able to complete this research thesis. With their theoretical and technical

skills, they led me in the right direction whenever they felt I needed it.

I would also like to thank my academic supervisor Prof. Dr.-Ing. Janet Siegmund

& Arooba Aqeel for the continuous support for my master thesis work with their

persistence, inspiration and tremendous expertise.

Pursuing a thesis at Fraunhofer EMI, motivated me to explore the interactive

domains of the industry, especially due to their strong work ethics and supportive

environment. I would also like to thank the experts and my colleagues for their moral

and ethical support during my time at Fraunhofer EMI. Without their passionate

participation and input, the thesis could not have been successfully conducted.

Finally, I would like to thank my friends for their great support. I am grateful to

my family’s diligent e↵orts to provide me with the opportunities I have had in my

career. I’m dedicating this work to them.

Freiburg in Breisgau, March, 2021

Shivam Shrivastava

2

Abstract

Agent-Based Modelling (ABM) is a modern way of modelling structures made up

of autonomous, interacting agents. ABM is helpful in modelling systems whose be-

haviour is driven by the interaction of di↵erent entities such as groups of agents.

Interaction can be designed as communication between agents. To achieve the com-

munication between groups of agents, in this master thesis, a ”leader and follower”

model has been implemented in an existing ABM that has been developed by Fraun-

hofer EMI in the course of the EU H2020 project SATIE (Security of Air Trans-

port Infrastructure of Europe) to represent passenger behaviour in airports. In the

”leader follower model”, all the followers stick to their leader in order to reach a spe-

cific target in a two dimensional environment. In this thesis, the group performance

with di↵erent group size has been investigated. In the current pandemic situation,

di↵erent distance rules have been proposed in order to restrict the spread of corona

virus. In this thesis, the impact of di↵erent distance rules on airport performance

has been analysed whereby breaking of rules by impatient passengers has been taken

into account.

Keywords Agent Based Modelling, Groups of Agents, Leader, Follower, Distance

Rule Violations.

3

Contents

Contents . 4

List of Figures . 6

List of Tables . 9

Listing . 10

List of Abbreviations . 11

1 Introduction . 12

1.1 Project Context . 12

1.2 Motivation & Objectives . 13

1.3 Research Question . 15

1.4 Thesis Contribution . 15

1.5 Thesis Outline . 16

2 Background And Code Basis . 17

2.1 Agent Based Modelling . 17

2.1.1 What is an Agent? . 18

2.1.2 Benefits of Agent-Based Modelling 20

2.1.3 Areas of Application . 21

2.1.4 Existing Toolkit Available . 22

4

CONTENTS

2.2 Existing Code . 22

2.2.1 Path Finding Algorithm . 24

2.2.2 Collision Avoidance Algorithm 27

2.2.3 Simulation Output . 31

2.2.4 Simulation Layout . 32

3 Implementation . 35

3.1 Group Dynamics . 35

3.1.1 Structure of Groups of Agents 35

3.1.2 Agent ID & Group ID . 37

3.1.3 Group Behaviour . 37

3.2 Global variables . 45

3.3 Distance Rules . 47

3.3.1 Introduction . 47

3.3.2 Distance Rule Violations . 48

3.3.3 Implementation Of Di↵erent Distance Rules 49

3.3.4 Plotting The Simulation Output 49

3.3.5 Automate The Simulation Process 51

4 Results . 53

4.1 Group Dynamics . 53

4.2 Distance Rules . 55

4.3 Layout modifications . 58

5 Conclusion . 64

5.1 Summary . 64

5.2 Outlook . 65

Bibliography . 66

5

List of Figures

1.1 Compiled view on some of IPS functionalities with network model

(bottom left) and ABM (bottom right) provided by colleagues at

Fraunhofer EMI. 13

1.2 Motivation summary. *ABM: existing code developed in SATIE. The

boxes 4 and 6 (light blue color) i.e. groups dynamics and distance

rules are part of research topics. The boxes 1 and 5 (dark blue color)

i.e. covid and airport are external sources which are modelled. The

boxes 2 and 3 (slight dark blue color) i.e. infrastructure design and

ABM are the basis for this master thesis work. 14

2.1 Representation of a human agent, the upper part of the image is the

representation of agents and their behaviour where as the lower part

is the representation of agents and their behaviour in the computer

code[13]. 18

2.2 Artificial world populated by agents and other objects. 19

2.3 Schematic representation of flight information attributes of agents

where a ticket is a reduced set of flight information. 23

2.4 Creation of nodes and adjacent child nodes form the current agent

position. 25

2.5 Path finding algorithm design. 25

2.6 Path finding algorithm with object obstruction. 26

6

LIST OF FIGURES

2.7 The movement of an agent from source to destination in 4 time steps.

The speed of an agent is 5 meter per time steps. 27

2.8 The movement of an agent from source to destination in 4 time steps.

The speed of an agent is 2.5 meter per time steps. 27

2.9 Agent scenario. Orange: agent 1 wants to go to the target and Green:

agent 2 wants to go to his target without intersecting each other. Here

the distance between the center point of both the agents is x >2 * R

+ D where R is radius of an agent, D is the distance rule 2 meter. . . 28

2.10 Agent collision scenario. Orange: agent 1 wants to go the target and

Green: agent 2 wants to go to the his target but due to distance

between the agent is less they are intersecting each other. Here the

distance between the center point of both the agents is x <2 * R +

D where R is radius of an agent, D is the distance rule 2 meter. . . . 29

2.11 Agent collision scenario. Orange: agent 1 wants to go to his and

Green: agent 2 wants to go to his target but due to collision with

walls and agent 1, agent 2 creates third potential angel on his right. . 30

2.12 Agent collision scenario. Orange: agent 1 wants to go to his target

and Green: agent 2 wants to go to his target but agent 2 is intersecting

will agent 1 as well as with the walls. 31

2.13 Airport layout with doors (blue), FIDS (red), check-in (yellow), secu-

rity (green), gates (orange), dots (black) represents the queue points

where agent will stand in order to do the check-in and security check

processing. 33

3.1 Structure of an example group of agents; 1 in red denotes the leader

and 2-6 in black are the followers. 36

3.2 Simulation of passenger movement in the airport with groups of agents

presented at a specific time step. Leaders are visualized as red and

followers as black dots. 39

7

LIST OF FIGURES

3.3 Simulation of passengers movement in the airport for an example

group of agents. The leader is presented by a red and the followers

with a black dotted line. 40

4.1 Box plots for each case of Table 4.1 and 100 simulations show the

average duration that agents ’exist’ in the airport. The black line

above and below the box are called as whiskers it show the spread

of data, yellow line in the box represents the median of the data, an

outlier (black small circle) is defined as a data point that is located

outside the whiskers of the box plot. 54

4.2 Results of 100 repeated simulations with a distance rule of 1 meter.

Graphs shows the number of violations that happened over the 2000

time steps. On the y-axis, the number of violations can be observed

for a particular time step. Right: The red line shows the mean and

the blue lines across the border of the grey area is the +/- standard

deviation. 56

4.3 Mean & Deviation graphs of distance rule violations for 100 simula-

tion runs. The red line shows the mean and the blue lines across the

border of the grey area is the +/- standard deviation for the distance

rule of 1.5 meter (left) and 2 meter (right). 57

4.4 Comparison between the di↵erent distance rules. The black line above

and below the box are called as whiskers it show the spread of data,

yellow line in the box represents the median of the data, an outlier

(black small circle) is defined as a data point that is located outside

the whiskers of the box plot. 58

4.5 Comparison of distance rule violations between simple and complex

layout at 1.5 meter distance. 60

4.6 Complex layout with more obstacles (yellow rectangles) which is called

’shop layout’. 61

8

LIST OF FIGURES

4.7 Layout comparison between simple, FIDS and shop layout. The me-

dian is given as black dotted line. The black line above and below

the box are called as whiskers it show the spread of data, yellow line

in the box represents the median of the data, an outlier (black small

circle) is defined as a data point that is located outside the whiskers

of the box plot. 62

4.8 Di↵erent movement of groups of agents across the complex airport

layout. 63

9

List of Tables

2.1 List of di↵erent toolkit [17],[22], GPL: General Public License. 22

2.2 Attributes of the objects ’agent’ and ’airport’. 23

2.3 List of objects in all three airport areas i.e. outside area, landside area

and airside area. *FIDS: Flight Information Display System monitors. 33

3.1 Follower spawn positions relative to the leaders x-position X and y-

position Y. 37

3.2 An example of the airport performance data set. 50

4.1 Comparison between three simulation cases with di↵erent group sizes.

The average group duration is a mean value over 100 simulations and

all groups. 54

10

Listing

3.1 C++ code snippet at the exit point. 41

3.2 Data structure of groups in C++. 43

3.3 C++ code snippet that represents the creation of a leader. 43

3.4 C++ code snippet that represents the creation of followers. 44

3.5 Python code snippet to extract information from csv all the files and

generate the graphs. 49

3.6 Python code snippet shows the implementation of triggering the exe

file. 51

3.7 C++ code snippet shows the implementation of capturing the com-

mand line argument in the C++ code. 52

11

List of Abbreviations

ABM Agent Based Modelling

CA Cellular Automata

GPL General Public License

XML Extensible Markup Language

BDI Belief Desire Intention

SATIE Security of Air Transport

Infrastructure of Europe

EIS Environmental Information

System

CSV Comma Separated Value

ID Identification Number

NA Not Applicable

IPS Impact Propagation Simulation

COV Corona Virus

FIDS Flight Information Display

System

ABMS Agent-Based Modelling and

Simulation

12

1 Introduction

Agent based modelling (ABM) is used to model and simulate interacting agents [1].

ABM based models are capable of simulating large number of agents or groups of

agents. It allows us to understand and analyse the behaviour of specific agents at any

point in time [35]. A system is a collection of individual agents that interact with the

environment [21]. The interactions between the agents are not sequential because

agents behave individually in parallel with each other [8]. An agent interacts in

many ways with the environment like e.g. path finding in a building. An agent must

decide its behaviour quickly according to the current environment and situation, like

e.g. avoiding obstacles and choosing the nearest doors. ABM is an empirical tool

which helps to design processes and environments [34]. In this thesis work, ABM

is used to model the group behaviour of agents and to analyse the impact of social

distance rules in the airport. This chapter outlines the project background, problem

statement, and major research contributions along with the report structure.

1.1 Project Context

This master thesis is embedded into and funded by the EU-H2020 project Security

of Air Transport Infrastructure of Europe (SATIE)1 [11]. In this project a toolkit

is developed to strengthen air tra�c management and airport operations against

cyber-physical threats. Threat scenarios are defined in airports of three di↵erent

1
This work has received funding from the European Unions Horizon 2020 research and innovation

programme under grant agreement No 832969. This output reflects the views of author(s),

and the European Union cannot be held responsible for any use which may be made of the

information contained therein. For more information on the project see: http://satie-h2020.eu/.

13

1 Introduction

countries of Europe i.e. Croatia, Italy and Greece in order to evaluate the toolkit

in operational conditions. One of the tools is the Impact Propagation Simulation

(IPS) developed by Fraunhofer EMI which enables to estimate the impact of cer-

tain cyber-physical threats on the airport infrastructure. IPS is a hybrid tool that

consists of two models, i.e. a network model and an ABM representing the air-

port infrastructure. The screenshot of IPS tool mentioned in Fig 1.1 is provided by

Fraunhofer EMI colleague.

Figure 1.1: Compiled view on some of IPS functionalities with network model (bot-
tom left) and ABM (bottom right) provided by colleagues at Fraunhofer
EMI.

1.2 Motivation & Objectives

The main objective is to contribute to the ongoing project SATIE and especially

to the ABM in IPS. In the existing simulation, the behavior of individual agents is

implemented. The main task of this master thesis is to implement the behaviour

14

1 Introduction

of groups of agents in IPS-ABM to simulate the behaviour of groups such as e.g.

friends and families. It give us a realistic view of queuing and how they wait for each

other in the simulation. Apart from that, in the current pandemic situation, across

the globe, every country is trying to restrict the spread of corona virus (COV) by

applying di↵erent distance measures, which is an area of research. In some crowded

situations, people do not have the chance or patience to respect the prescribed

distance rules. In this thesis research, the impact of distance rules on an example

airport infrastructure has been analysed, taking into account the limited patience

or time resources of people in an airport.

Figure 1.2: Motivation summary. *ABM: existing code developed in SATIE. The
boxes 4 and 6 (light blue color) i.e. groups dynamics and distance rules
are part of research topics. The boxes 1 and 5 (dark blue color) i.e. covid
and airport are external sources which are modelled. The boxes 2 and 3
(slight dark blue color) i.e. infrastructure design and ABM are the basis
for this master thesis work.

The motivation for this thesis is further summarized in Fig 1.2. Due to the project

context, the infrastructure that is considered in this thesis is an airport (1). To im-

prove existing or design new airports (2) models and simulation environments are

needed (3), here represented by the ABM. The existing airport layout needs to be

incorporated in the simulation and the passenger behaviour needs to be represented

realistically. In this thesis work, group dynamics (4) have been researched in the

literature and implemented in the existing ABM code 2. Further, due to the COV

2
The existing ABM code is developed by Fraunhofer EMI.

15

1 Introduction

pandemic (5) the processes of airports in the SATIE project have been highly im-

pacted also by distance rules (6). These distance rules have been researched in the

literature and implemented in ABM between the groups of agents to analyse the

impact on the performance of the example airport.

1.3 Research Question

The implementation of groups of agents in ABM comes with research questions, i.e.

how groups of agents behave collectively, how the agents walk together, how the

members of the group wait for each other or how to make the groups look realistic.

Especially the COV distance rules, requires an e↵ort to understand the impact on

the airport and the needed balance between safety and impact on the performance

of the airport.

1.4 Thesis Contribution

In the past, many researchers have contributed to ABM. However, literature for

groups dynamics and COV distance rules is very sparse. In this thesis, group dy-

namics and distance rules in airports is discussed, quantified and the results are

presented. The primary contributions of this thesis are summarized as follows:

1. Implementation of groups of agents in the existing ABM developed in SATIE.

2. A class of agent group is introduced to dynamically generate groups of agents

with di↵erent sizes.

3. Implementation of realistic behaviour of agents in the simulation i.e. how they

wait for each other after di↵erent processes in the simulation.

4. Implementation of di↵erent distance rules between the groups of agents and

individual agents.

16

Arooba
Sticky Note
I would suggest add more context to why we need this system, rather how we will achieve this! Explain more what is meant by cyber physical threats.

Arooba
Sticky Note
IS COV a term used for covid ?

1 Introduction

5. Introduction of patience count as an attribute of an agent is introduced.

6. Distance rules and the patience count of each agent is used to analyse the

impact on the performance of the example airport.

7. The layout of the airport is modified to compare the performance of the airport

under varying situations.

1.5 Thesis Outline

The remainder of this thesis is structured as follows. First, an introduction to

the background of ABM and the existing ABM code given in Chapter 2. Chapter 3

presents the literature survey on group dynamics and the implementation of it in the

existing code. Further, the literature survey and the implementation of distance rule

violations is included. The results of the group dynamics and distance rule violation

implementation are represented in Chapter 4. Finally, the report concludes with a

summary of this thesis.

17

2 Background And Code Basis

2.1 Agent Based Modelling

Agent based modelling (ABM) is the computational study of social agents as evolv-

ing systems of autonomous interacting agents. ABM allows to test di↵erent hypoth-

esis related to the attributes of agents, their behavioural rules and their interaction

[12]. In ABM, the relationship of the agents is not totally parallel but rather it

is reciprocal i.e. agents can change their behaviours according to the behaviour of

their surroundings [4].

The main strength of ABM is that the individual agents have full control over

their future decisions. ABM first began to be used in the academic research in the

1960s and 1970s. Before this, the most common model used for the simulation was

spatial interactions or di↵usion models. In spatial models, large diverse groups of

people were considered as one group and each of them were given the same behaviour

and movements [14].

ABM has evolved from Cellular Automata (CA), which has been developed in the

1960s. Each CA is essentially a computer grid. In the grid, each cell has a set of

possible states. It runs through a number of iterations and at each iteration each

cell looks at the state of the neighbouring cell and changes its state accordingly [15].

In ABM, the theoretical hypothesis of agents behaving like passengers in an air-

port is converted into micro-specifications, i.e. a set of rules that specify how an

agent behaves and responds to the environment. Once the environment is prop-

erly populated with agents, the micro-specification can be implemented and the

18

2 Background And Code Basis

simulation to evaluate the result can be performed [28].

2.1.1 What is an Agent?

From an ABM perspective, there are certain features that are common to most of

the agents, which are explained briefly in the following [13]:

• Autonomy: Agents are autonomous units, but they are capable of sharing

information with other agents in order to make decisions independently and

collectively.

• Heterogeneity: An agent is the representation of a human or some other entity

such as e.g. cars and insects. They have attributes such as e.g. age, gender

and size. These attributes are drawn from distributions.

• Perception: Agents can perceive their environment as well as other agents in

that environment [28].

• Memory: agents have a memory in which they keep track of their current and

previous states [28].

Figure 2.1: Representation of a human agent, the upper part of the image is the rep-
resentation of agents and their behaviour where as the lower part is the
representation of agents and their behaviour in the computer code[13].

19

Arooba
Sticky Note
explained below, add refrence at the end

Arooba
Sticky Note
representation
of agents and their behaviour....
 in what ?

.... where as the lower part is the
representation of agents and their behaviour in the computer code[13].

2 Background And Code Basis

Fig 2.1 represents human agent. The attributes given here are examples and can

vary. Thus, di↵erent simulations can have di↵erent attributes. The Move() function

generates a route from source to target. A collection of multiple agents interacting

with each other or interacting within the environment is termed as ABM.

Figure 2.2: Artificial world populated by agents and other objects.

ABM is composed of three main components besides the agents which are given

in the following:

• Rules

• Environment

• Time

Rules

The agents presented in Fig 2.2 posses rules that e↵ect their behaviour and relation-

ship with other agents and their surrounding environment. The rules are typically

derived from numerical calculation or data analysis. They can be applicable to all

the agents or agents can have individual rules. An example for a general rule would

be if an agent in an airport, i.e. a passenger, wants to board a flight, he first needs

20

2 Background And Code Basis

to pass the security check. Rules are typically implemented around if-else condi-

tions. Once a condition is satisfied the agent will carry out a certain functionality,

otherwise the agent will perform an alternative specified action [13].

Environment

The environment in terms of ABM is the space in which agents and other objects

exist. An environment can be abstract or can have objects in the space. A simulation

can have multiple environments. Further, an environment can be static or dynamic

where the latter means that it can change over the simulation time steps [3]. An

agent within an environment is spatially explicit, i.e. the agent has a location in the

geometrical space. The latter is important as an agent is required to have a specific

location to generate a route [13].

Time

The third component of ABM simulations is time. A simulation runs for a specific

number of time steps. In each time step, each agent updates its location in the

environment. A time step represents e.g. a millisecond, a second, a day or a year

[3].

2.1.2 Benefits of Agent-Based Modelling

The benefits of ABM compared to other modelling techniques are described below

• ABM captures emergent phenomena: ABM can be used when individual

behaviour is non-linear, be classified by thresholds and if-then rules [7].

• ABM provides a natural description of the system: ABM is suitable

for simulating a system composed of behavioural entities. ABM can be used

when activities describe a system better than processes.

• ABM is flexible: Flexibility makes ABM multidimensional i.e. it is easy to

add more agents and entities in the environment.

21

Arooba
Sticky Note
can continue the airport example here

2 Background And Code Basis

2.1.3 Areas of Application

ABM is a powerful modelling and simulation technique that has a wide number of

applications. Some example applications are given in the following:

• Evacuation Flow Life threatening situation like fires or terrorist attacks in

buildings trigger panic and cause crowd stampedes which leads to fatalities and

injuries. To understand and avoid these kind of scenarios, ABM is appropriate

to incorporate human behaviour. It helps to analyse if the design of a building

is safe [27].

• Tra�c Flow ABM is used to simulate tra�c systems and to identify potential

bottlenecks of the system. ABM allows to model pedestrians and tra�c control

systems to study e.g. tra�c signal priorities, to visualize results and to predict

the potential issues [25].

• Stock Market Simulation ABM allows to understand how market trends

dynamically evolve to an equilibrium or how they drifts away from it. ABM

helps to analyse how a small change in a initial parameter could change com-

plex financial markets [33].

• Safety ABM allows to model the safety operations from disturbances or haz-

ardous scenarios. There are several scenarios which can be modelled such as

radar is not working, an human agent (pilot) is a↵ected by usage of alcohol,

pilot gives the wrong position of the aircraft etc [31].

• Archaeology Archaeology uses ABM to analyse and understand the soci-

etal change, human-environment interaction. ABM allows to model human

evolution, culture evolution in contemporary archaeological simulation[23].

• Biological Process ABM allows to model cancer and immune cells individu-

ally. Each cell is represented as an individual agent and can have individual at-

tributes like e.g. birth, death rates, position, state and immune characteristics.

22

2 Background And Code Basis

Varying model parameters and rules allow to understand the characteristics

of successful and unsuccessful treatments[26].

2.1.4 Existing Toolkit Available

There are multiple open source packages and licensed versions available for the

development of ABM environments. Table 2.1 contains some example ABM toolkit.

Toolkit Programming Language License

Swarm Objective-C, Java GPL
RePast Java, Python GPL
Mason Java GPL
NetLogo NetLogo Free, but not open
JADE Java open source
JAMES II Java open source
MaDKit Java, C++ Paid
SeSAm Java Paid
Jadex BDI Java, XML Open Source
JIAC Java Open Source

Table 2.1: List of di↵erent toolkit [17],[22], GPL: General Public License.

In the following the ABM code especially designed by Fraunhofer EMI in the

project SATIE to represent the passenger movement in an airport is presented.

2.2 Existing Code

The ABM SATIE simulation is written in the C++ programming language. In

the airport simulation, di↵erent functionalities are implemented like the creation of

an agent, agent rules and the environment for the agents. To this end, the code

is divided into di↵erent classes and each class is responsible only for the specified

functionality. Note, the existing code only handles individual agents and does not

yet take group dynamics into account.

23

2 Background And Code Basis

Name Type Value

Agent Unique ID Integer -
Ticket Object -
Flight Information Object -
Size Double 0.8 m Diameter
Speed Average Double 1.5 m per time step
Speed Divergence Double 0.5 m per time step
Space To Walls Double (Size/2) + 0.5 m
Space Between Agent Double Size + 0.25 m
Position Object -
Direction Object -
Side Enum Outside (at the time of spawning)

Airport Side Enum Landside, Outside, Airside
Flight Information Object -

Table 2.2: Attributes of the objects ’agent’ and ’airport’.

An agent has multiple attributes mentioned in Table 2.2. The unique ID attribute

is assigned to the agents as they get created and it is incremented by one for every

new agent. The size of each agent is kept at 0.4 meter radius in the existing code.

The speed of each agent is generated randomly with the speed average and speed

divergence variable. The space between the agents to the wall is calculated from the

radius of an agent. The airport side is an attribute of an agent that will be changed

as an agent moves from one target to another. In the existing code, the airport side

is stored in the enum which has three sides, i.e. outside, airside, landside.

Figure 2.3: Schematic representation of flight information attributes of agents where
a ticket is a reduced set of flight information.

Fig. 2.3 presents the flight information attributes. In the code, the flight infor-

24

2 Background And Code Basis

mation attribute is also part of the airport object. In the agent class, every agent

has a ticket and at the time of creation this ticket contains only parts of the general

flight information object such as flight number, airline name, boarding time but also

the additional checked-in variable. The checked-in variable is a boolean variable to

check if an agent has checked-in or not. Apart from that, when an agent goes to the

FIDS a flight information object is assigned containing flight number, airline name,

boarding time, gate id and check-in id. The flight number is generated by a random

integer generator. In the existing code, the airline has an enum class which contains

three values, i.e. Lufthansa, Ryanair, Eurowings. In the existing code, there is a

probability where agents do not have luggage and they have done the web check-in,

in this case, the checked-in attribute of a ticket is set to true.

2.2.1 Path Finding Algorithm

To move from the current position to a specific target, an agent needs a route or

path. Prior to moving, the path finding algorithm of the existing code generated a

route of child-nodes and nodes.

Fig 2.4 shows the creation of child nodes and nodes. From the nodes (represented

by blue color), 5 child nodes (represented by green color) are created in di↵erent

random angles. The space between all child nodes and nodes is defined as 5 meter.

The reason behind 5 meter distance is to have less computational e↵orts i.e. if the

distance is less it will create more nodes and child nodes which will impact the

computation processing of the simulation.

25

2 Background And Code Basis

Figure 2.4: Creation of nodes and adjacent child nodes form the current agent posi-
tion.

An agent creates its path from source to target by creating nodes and child nodes

as described in Fig 2.5. The selection of a child node is based on the shortest distance

between the source and the target. If one of the child nodes has a shorter distance

to the target compared to the rest of the four child nodes then that node will be

selected.

Figure 2.5: Path finding algorithm design.

26

2 Background And Code Basis

Figure 2.6: Path finding algorithm with object obstruction.

There are chances while creating child nodes that they may fall onto an object

like e.g. a wall. In that case, an agent would bypass the object which would not

look realistic and thus the algorithm avoids selecting these nodes. In Fig 2.6, walls

are present between the source and the target. Some child nodes overlap with the

walls. To extract the right path, the algorithm avoids the child nodes which are on

the walls. As we can see from Fig 2.6, the child nodes with an orange color and a

path intersecting with the object’s surfaces are avoided even if they are closer to the

target. One of the neighbouring child nodes are selected to reach the target.

Note, the path finding is performed prior to actual walking, agents calculates the

path from source to the interim targets and once it reaches to the interim target

it calculate the path to next interim target, this process continues until it reaches

to the main target, but agent does not calculate path from source to main target

beforehand. Only if the route has been successfully created using the algorithm the

agent can walk to the target using the route consisting of nodes.

27

2 Background And Code Basis

Figure 2.7: The movement of an agent from source to destination in 4 time steps.
The speed of an agent is 5 meter per time steps.

Fig 2.7 shows the movement of an agent from the example source FIDS to the

example target check-in. The path consisting of nodes with 5 meter distance is

presented along with the steps the agent will take.

Figure 2.8: The movement of an agent from source to destination in 4 time steps.
The speed of an agent is 2.5 meter per time steps.

Fig 2.8 shows the movement of an agnt on the same path as in Fig 2.7. However

this agent moves with a smaller velocity and thus covers less nodes in the same

28

2 Background And Code Basis

amount of time.

Even if a suitable route has been created that leads to the target, the agent taking

that path might collide with other agents on its way.

2.2.2 Collision Avoidance Algorithm

In the Fig 2.9 two agents with the same velocity and same agent radius are moving

towards their targets. The distance between both the agent’s center is large and

they are not intersecting each other. Hence there will be no collision and in this

case the potential next position on the path can be selected.

Figure 2.9: Agent scenario. Orange: agent 1 wants to go to the target and Green:
agent 2 wants to go to his target without intersecting each other. Here
the distance between the center point of both the agents is x >2 * R +
D where R is radius of an agent, D is the distance rule 2 meter.

Fig 2.10, both the agents move towards their target and the distance between the

agent’s center is smaller than 2 * agent radius + distance. In this case, they would

collide in the next step. Thus, both the agents will try to create at a random angle

to the right a new position to walk to. The distance between current position and

new potential position to avoid the collision depends on the agent velocity.

29

2 Background And Code Basis

Figure 2.10: Agent collision scenario. Orange: agent 1 wants to go the target and
Green: agent 2 wants to go to the his target but due to distance between
the agent is less they are intersecting each other. Here the distance
between the center point of both the agents is x <2 * R + D where R
is radius of an agent, D is the distance rule 2 meter.

Fig 2.11 shows the collision of two agents with the same velocity when the next

potential position of an agent falls on the wall. In that case, agent 2 creates another

random angel on the right to avoid the collision with the wall.

30

2 Background And Code Basis

Figure 2.11: Agent collision scenario. Orange: agent 1 wants to go to his and Green:
agent 2 wants to go to his target but due to collision with walls and
agent 1, agent 2 creates third potential angel on his right.

In Fig 2.12, agent 2 tries to avoid the collision with another agent 1 and creates

two potential angels on the right side . As we can see from Fig 2.12, all the potential

next positions are either intersecting with a wall or with agents. In this scenario

agent 2 cannot move as he could not find a suitable potential next position to walk

to. Thus, this agent needs to wait for one time steps to try moving again.

31

2 Background And Code Basis

Figure 2.12: Agent collision scenario. Orange: agent 1 wants to go to his target and
Green: agent 2 wants to go to his target but agent 2 is intersecting will
agent 1 as well as with the walls.

2.2.3 Simulation Output

Each simulation run generates data sets about the agents. The data can be used to

analyze the performance of the airport and further in the existing code it is used for

generating the user interface. In the simulation, two data sets are generated:

• Agent Data

• Airport Performance

Both the data sets are written in CSV files. The agent data file contains the

information about each time step, agent ID of all existing agents in the respective

time step, agent position x and position y at each time step. The airport performance

data set contains the information about each time step, the number of agents in the

outside area, the number of agents in the landside area, the number of agents in the

airside area and a boolean value to check if the airport is evacuating.

32

2 Background And Code Basis

The position of an agent i.e. x and y coordinates are used to generate the user

interface by python scripting. In the C++ code, the positions of all the objects

and areas are defined i.e. walls, check-in groups, security check area, gates, outside,

landside, airside area. These coordinates are used in the python script to design the

airport layout. From the agent data CSV file, the position of an agent is extracted

and used to map them on the layout. A python script generates an image at each

time step. This image contains the positions of all the agents present in that par-

ticular time step. Once the python script finishes to write the images, a video is

created by combination of all the images. In this way, the simulation results are

summarized in a video.

2.2.4 Simulation Layout

In the airport simulation, the layout is divided into three di↵erent sections (see

Fig 2.13):

• Outside area,

• Landside area and

• Airside area.

All these areas contain di↵erent objects and each object has certain functionalities

which are given in Table 2.3.

33

2 Background And Code Basis

Area Objects Number

Outside Area
Doors
Spawning of agent area

2
1

Landside Area

Check-in group
Check-in counter
FIDS*
Security queue
Security check counter

2
20 (10 counters in each check-in group)
3
2 vertical and 5 horizontal queue
5

Airside Area
Gates
FIDS*

3
2

Table 2.3: List of objects in all three airport areas i.e. outside area, landside area
and airside area. *FIDS: Flight Information Display System monitors.

Figure 2.13: Airport layout with doors (blue), FIDS (red), check-in (yellow), secu-
rity (green), gates (orange), dots (black) represents the queue points
where agent will stand in order to do the check-in and security check
processing.

34

2 Background And Code Basis

Outside Area

The outside area is responsible for the spawning of an agent. It is linked to the

landside area through two doors, the agents can move from outside to landside

through the doors. At the time of spawning of an agent, they get a random position

in the outside area. An agent will get the nearest door as the next target which

leads an agent to the landside area.

Landside Area

The landside area in the simulation has di↵erent functionalities. It contains two

check-in groups which have 10 counters each, corresponding to each counter there

is a queue that means each check-in group contains 10 queues. In each queue, 5

queue points are defined for the agents to wait. The landside area has three Flight

Information Display System monitors (FIDS). These FIDS set the flight information

of an agent like gate ID, airline and flight number. The security check has 5 security

check counters and two types of queues, i.e. horizontal and vertical queues. There

are 2 vertical queues placed next to each other, in each queue 15 queue points are

defined to wait. There are 5 horizontal queues placed next to each other with a

specified distance. In each of these horizontal queues, there are 10 queue items for

the agents to wait. After passing through the vertical and horizontal queues, the

agents choose the least crowded queue to go to the airside area.

Airside Area

The airside area contains three gates. Once the agents have passed the security and

as soon as they reach to the gate they get deleted from the simulation. The airside

area is also equipped with two FIDS.

35

3 Implementation

3.1 Group Dynamics

As discussed in Chapter 2, the existing C++ simulation environment only processes

individual agents but does not take into account group behaviour. One of the main

goals of this work is to introduce group dynamics by adding groups of agents.

In order to implement and analyse the group behaviour of agents, communication

between the agents in the groups plays a vital role [24][30]. The agents must be

able to share information in the group. Real-time simulation of groups of agents

comes with enormous amount of complexity. We need to control the overall action of

groups of agents[10]. To achieve this, a leader and follower model has been designed

based on [32] where the idea of agents being connected to each other is presented.

Each group has a leader and a certain amount of followers. The leader receives a

route from target to target (e.g. from door to check-in counter) and the rest of the

followers copies the same path.

A leader with group of agents could contribute not only to our understanding of

human social phenomena but also the development of teams of agents with practical

applications [16]. Practical applications are in spread in di↵erent fields, such as

monitoring, surveillance and entertainment [6], [2].

3.1.1 Structure of Groups of Agents

In this thesis work, groups of agents are designed with the following structure:

• Leader

36

3 Implementation

• Follower

• Agent ID

• Group ID

Figure 3.1: Structure of an example group of agents; 1 in red denotes the leader and
2-6 in black are the followers.

Fig 3.1, shows the creation of one example group of agents. The first element

is the leader of the group whereas the remaining are the followers. All groups are

based on the same structure but di↵erent group sizes are possible to be created in

the simulation environment. A group with only one agent, i.e. the leader, represents

an individual agent - in the case of an airport this would be e.g. a passenger that

travels alone. The structure presented in Fig 3.1 is used to spawn groups of agents.

The position of the leader is generated randomly in a specified spawn area where all

the individual agents, as well as groups of agents, will get created. The position of

the followers are relative to the leader’s position of that group.

Table 3.1 gives the position of the group members.

37

3 Implementation

Followers x-Position y-Position

2 X - 0.5 Y - 0.5
3 X + 0.5 Y - 0.5
4 X - 0 Y - 1
5 X - 0.5 Y - 1.5
6 X + 0.5 Y - 1.5

Table 3.1: Follower spawn positions relative to the leaders x-position X and y-
position Y.

The relative positions in the group will change as they start moving and the

followers copy the route of the leader.

3.1.2 Agent ID & Group ID

Every agent has a unique ID to distinguish him from the other agents. When an

agent is created the counter for this agent ID is incremented so that every agent

gets a unique ID. The agent ID helps also to create groups of agents and to keep

track of the agents belonging to a particular group.

All agents have a group ID identifying the group they belong to. The group

size can vary at the time of the spawning of the agents. At the time of creation,

all the group members belonging to one group get the same group ID. Following

this approach, the agents belonging to the same group can be tracked. In order to

maintain groups of agents in this work, MultiMap has been used to maintain all

groups of agents, which is part of the Standard Template Library of C++. It allows

to have multiple values with the same key, which helped to assign the same group

ID to agents belonging to the same group.

3.1.3 Group Behaviour

With the help of these attributes, i.e. agent ID and group ID, groups of agents with

random sizes that perform actions collectively were formed. Once a leader gets a

new target, the path finding to the target is performed which means generating the

38

3 Implementation

child nodes and nodes to reach to the destination. The members of the group copy

the route and nodes from the leader to reach the same target.

There are a few scenarios where groups get separated and they should reunite after

the process. In the implementation two scenarios have been encountered, which are

• after the check-in and

• after the security check.

At check-in each member of the group creates a separate route in the queue which

is called simple route. Once the check-in process is done, all agents move to the

exit point that is defined after the check-in. At this point, all the members of one

group wait for each other. Once all the members of the group gather at the exit

point the new target gets set for the leader and again the followers get the same

route as the leader. After the check-in exit point, the leader gets the target e.g.

the FIDS or the nearest queue of the security. After the security, the other scenario

takes place and in this work an additional exit point has been implemented where

all the members of the group gather and then proceed e.g. to the gate in the air

side. Fig 3.2 illustrates groups of agents at di↵erent parts of the airport.

39

3 Implementation

Figure 3.2: Simulation of passenger movement in the airport with groups of agents
presented at a specific time step. Leaders are visualized as red and
followers as black dots.

In Fig 3.3, the movement of one example group of agents is tracked in the airport

layout. As we can see from Fig 3.3, the black dotted lines represent the movement

of group members and the red dotted line represents the movement of a leader. The

group started from the spawn area and chooses the nearest door. When the group

crosses the doors and enters the landside area we can see that they stick together till

the check-in area. Once the group member are done with the check-in, they wait at

the exit point for all the group member. Once all the group members have arrived,

they proceed towards the security queues. At the security, the group members are

distributed in di↵erent security queues and process through the di↵erent security

counters. Once the security is done, again the agents in the group wait at the exit

point. Once all agents gather at the exit point, they walk together towards the gate

and finally de-spawn (deleting from the simulation).

40

3 Implementation

Figure 3.3: Simulation of passengers movement in the airport for an example group
of agents. The leader is presented by a red and the followers with a black
dotted line.

Listing 3.1 shows the code snippet written to perform the waiting of group mem-

bers for each other after the security check. Line number 1 in the code snippet is

the lambda expression at the exit point of the security. Once the agent reaches the

security exit point, it triggers this lambda expression. The exit point captures the

airport object, tempExitSecurity and the route object. The lambda expression

accepts the agent object as parameter. Once the agent reaches the exit point, the

side attribute of an agent is changed to airside area described in line number 2. In

line number 4, the size of the group is received with the help of an agent object.

Listing 3.2 shows the data structure of the groups. Multimap has been used to

store the groups of agents. As the multimap is a key-value pair data structure, the

leader’s unique ID has been added as the key and the follower agent as the value.

41

3 Implementation

A group can have multiple agents, so all the follower agents are inserted with the

same key i.e. the respective leader ID. Line number 1 of the Listing 3.2 gives the

declaration of the mapping of followers with the respective leader. In line number

2, the key and corresponding values are inserted in the multimap.

Following this approach, the number of agents belonging to the same group can be

extracted which refers to line number 4 of Listing 3.1. In line number 5, a condition

is implemented to check if an agent is an individual. If the latter case is true, i.e.

the group has no followers then the newTarget function in line number 6 is called

directly. The newTarget function sets the new object of a particular airport side

as the next target. For example in the airside area, an agent may either go to the

FIDS or the gates. In line number 7, the isInQueue attribute of an agent is set to

false. In line number 9, the simulation iterates over the vector of leaders and again

checks the size of the group (see line number 10).

In line number 11, the simulation iterates over all the followers in the multimap

and checks if the leader ID matches with the key of the multimap. If the latter is true,

it is checked if all the group members including the leader have reached the target by

calling the isTargetReached method. This method accepts two parameters. First,

it takes the position of the leader and compares it with the target. In the same way

it is checked for each follower if their targets have been reached. If both, leader and

followers, have reached the exit point, the local variable agentsAtSecurityExit is

incremented by one. Second in line number 19, it is checked if the size of the group

equals the local variable agentsAtSecurityExit. If the latter is true, the leader’s

airport side attribute is assigned to airside and the new target function is called. As

soon as a leader gets a new target, the rest of the follower agents of that particular

group will follow the path of the leader.

1 exitSecurity.setCallback ([airport , tempExitSecurity , route](Agent

* agent) {

2 agent ->setAirside(AirportObject :: AirportSide :: AIRSIDE);

3

42

3 Implementation

4 int sizeofGroup = airport ->getLeaderWithFollowerMap ()->count(

agent ->getUniqueId ());

5 if (agent ->isLeader () && sizeofGroup == 0) {

6 agent ->newTarget ();

7 agent ->isInQueue(false);

8 }

9 for (std::vector <Agent*>:: iterator itLeader = airport ->

getLeaderAgents ()->begin (); itLeader != airport ->getLeaderAgents

()->end(); itLeader ++) {

10 sizeofGroup = airport ->getLeaderWithFollowerMap ()->count ((*

itLeader)->getUniqueId ());

11 for (std::multimap <int , Agent*>:: iterator itrMap = airport ->

getLeaderWithFollowerMap ()->begin(); itrMap != airport ->

getLeaderWithFollowerMap ()->end(); itrMap ++) {

12 (* itrMap).second ->setAirside(AirportObject :: AirportSide ::

AIRSIDE);

13 if ((* itLeader)->getUniqueId () == itrMap ->first) {

14 if ((route ->isTargetReached(itrMap ->second ->getPosition ()

, new Target(tempExitSecurity ->getArea ()->getShape (), 10)))

15 && (route ->isTargetReached ((* itLeader)->getPosition (),

new Target(tempExitSecurity ->getArea ()->getShape (), 10))))

16 {

17

18 agentsAtSecurityExit ++;

19

20 }

21 if (sizeofGroup == agentsAtSecurityExit) {

22 (* itLeader)->setAirside(AirportObject :: AirportSide ::

AIRSIDE);

23

24 (* itLeader)->newTarget ();

25 agentsAtSecurityExit = 0;

26 }

27 }

28 }

43

3 Implementation

29 agentsAtSecurityExit = 0;

30 }

31 });

Listing 3.1: C++ code snippet at the exit point.

1 std::multimap <int , Agent*> leaderWithFollowerMap;

2 airport ->getLeaderWithFollowerMap ()->insert(std::pair <int , Agent*>(

leaderAgent ->getUniqueId (), groupAgent));

Listing 3.2: Data structure of groups in C++.

In section 3.1.1, the creation of groups is described and in Listing 3.3 the cor-

responding implementation is presented. In line number 1, the group constructor

accepts the airport object, airport side, spawn area and size of the group as parame-

ters. In line number 7 and 8, the x- and y-position of the leader are generated using

the spawn area dimensions and a random number generator. Once the position of

the leader is created, the corresponding new agent object gets created in line number

10. The agent constructor accepts the airport object, x- and y-position of the agent,

direction of an agent (initially 0,0), ticket object, boolean value to check if an agent

is a leader and group ID. Once the agent gets created, it is pushed into a vector of

agents. If the size of the group is more than one, the agents is added it to a specific

vector that contains only leaders.

1 Group ::Group(Airport* airport , AirportObject :: AirportSide

airportSide , Shapes :: Rectangle spawnArea , int size) {

2 this ->shape = spawnArea;

3 this ->groupID = latestGroupID;

4 this ->size = size;

5

6 //Spawn leaders

7 double leaderX = shape.getPointMin ().getX() + shape.getWidth () *

44

3 Implementation

Auxillary :: genDouble ();

8 double leaderY = shape.getPointMin ().getY() + shape.getHeight () *

Auxillary :: genDouble ();

9

10 Agent* leaderAgent = new Agent(airport , Point(leaderX , leaderY),

Direction (0, 0), airport ->generateTicket (), true , latestGroupID)

;

11 airport ->getAgents ()->push_back(leaderAgent);

12 if (size > 1) { // only add leader if they have a group.

13 airport ->getLeaderAgents ()->push_back(leaderAgent);

14 }

15 leaderAgent ->newTarget ();

Listing 3.3: C++ code snippet that represents the creation of a leader.

The initial positions of follower relative to the leader position are given in Ta-

ble 3.1. The Listing 3.4 describes the implementation of the creation of followers of

the group. While creating the group, the size of the group is passed to the function

that creates the position of the followers relative to the leader. In line number 6 and

7, a local variable is created which stores the value relative to the position of the

leader. In the same way, the positions for all the members of the group are created.

Once the position of a follower is created, the agent object constructor is called with

the leader boolean value as false because to generate the follower agents.

1 for (int i = 0; i < size -1; i++) {

2 double tempX = 0;

3 double tempY = 0;

4

5 if (i == 0) {

6 tempX = leaderX - 0.5;

7 tempY = leaderY - 0.5;

8 }else if (i == 1) {

9 tempX = leaderX + 0.5;

10 tempY = leaderY - 0.5;

45

3 Implementation

11 }else if (i == 2) {

12 tempX = leaderX + 0;

13 tempY = leaderY - 1;

14 }else if (i == 3) {

15 tempX = leaderX - 0.5;

16 tempY = leaderY - 1.5;

17 }else if (i == 4) {

18 tempX = leaderX + 0.5;

19 tempY = leaderY - 1.5;

20 }else if (i == 5) {

21 tempX = leaderX + 0;

22 tempY = leaderY - 2;

23 }else if (i == 6) {

24 tempX = leaderX + 1;

25 tempY = leaderY - 1;

26 }else if (i == 7) {

27 tempX = leaderX - 1;

28 tempY = leaderY - 1;

29 }

30 }

Listing 3.4: C++ code snippet that represents the creation of followers.

3.2 Global variables

During the implementation of group dynamics, variables needed to be modified and

added. However, in the existing code, most of the variables which can be customized

or can be used as a configuration parameter were hard coded. To make the code

more flexible, a class which contains all the global variables has been introduced

which can be customized before the start of the simulation. The variables listed

below can be customized:

• Time step This variable defines the length of one time step. By default the

46

3 Implementation

time step is 1 second.

• Spawn rate To run the simulation, agents need to be spawned at particular

time intervals. By default the spawn rate value is kept at 10 which means an

agent spawns every 10 time steps.

• Airport width & airport height The airport height and width allows the

user to configure the airport infrastructure. In the code by default the airport

height and width is set to 150 and 200 meter respectively.

• Check-in & security counter processing speed The processing speed of

the check-in and security counters can be customized by the user. To make

the simulation process fast these parameters can be changed. By default value

is kept is 5 and 10 time steps respectively.

• Time steps to run the simulation The user can specify the amount of time

to run the simulation. By default the simulation runs for 2000 time steps in

the code.

• Space between agents in groups The space between agents in groups can

be customized. This variable enables the agents to maintain a certain distance

within the group. By default the value is kept at 0.25 meter.

• Space between individual agents The space between individual agents can

also be customized which also defines the space agents of di↵erent groups have

to keep to each other. By default the value is kept at 1.5 meter.

• Queue item distance The queues at check-in and security counters have

queue item positions which enable the agents to stand at specified distance.

By default in the code the value is kept at 1.5 meter.

47

3 Implementation

3.3 Distance Rules

3.3.1 Introduction

In Chapter 2 and 3, the agent-based simulation and the implementation of group

dynamics was introduced. Further, distance variables were described between agents

and obstacles, between agents in a group and between agents of di↵erent groups.

These already in place distance rules and the current pandemic situation motivated

the remainder of this work.

During the COV pandemic, physical distancing is an important part of measures

to control the spread but exactly how much distance is required is unclear. COV

virus proliferates when it gets into the body through the eyes, nose or mouth [29].

The virus usually spreads through surfaces or more commonly through the air where

it is released by coughs and sneezes. Thus the physical distancing comes into picture

to avoid the contagious from spreading. According to research done by Well [20],

the origin of distance rules began in the 19th century where initially scientists were

collecting samples of visible droplets containing pathogens on glass and proposed a

1-2 meter distance as safe. Further, the 1-2 meter rule is based on the distinction

of respiratory droplets into two sizes, large and small. The emitted large droplets

can travel in the air more quickly than they evaporate and land within a 1-2 meter

range whereas small droplets can evaporate more quickly than they fall.

According to health o�cials from the UK, 2 meter distance from each other is

recommended. Countries like Canada and Spain opted for the same distance rule

as the UK. But di↵erent countries have their own distance rules. In the US, the

common distance rule is 1.8 meter whereas countries like Germany, Italy, Greece,

Australia, Netherlands a distance rule of 1.5 meter is implemented. South Korea

has a distance rule of 1.4 meter. In some countries like France, Denmark, China,

Hong Kong and Singapore distance is kept to 1 meter [29].

The Lancet study instructed by the World Health Organization observed that

the spread of virus without any protection such as mask or face shield comes down

48

Arooba
Highlight

Arooba
Pencil

3 Implementation

drastically with the distance. At the area of 1 meter, the risk is 12.8%, 2.6% at the

distance of 1.5 meter, 1.3% at 2 meter[9].

3.3.2 Distance Rule Violations

An increased distance rule in terms of ABM means that the agents have a larger

radius around themselves in which no other agent is allowed to enter. Thus, the

chance for collisions between agents increases and also the chance that agents need

to wait for some time steps to find a suitable path without collisions. The possibility

for agents to violate the distance rule when they loose their patience has been

introduced. A patience threshold attribute has been implemented as a uniform

random number between 2 and 5. The patience threshold attribute of an agent

is initialized at the time of the creation of an agent. Agents try to maintain the

specified distance with the other agents. However, if there is no other way to avoid

the collision than waiting, the agent’s waiting counter attribute gets increased. If

an agent has to wait more than one time step, the waiting counter increases and

once it reaches the patience threshold value, the agent will violate the distance rule.

In the code this is reflected by a small distance value which means that this agent

does no longer respect the prescribed distance rule and simply squeezes through the

other agents to reach the target.

The information about the agents which have violated the distance rule is written

in an output CSV file generated by the C++ code. More information on the existing

data sets can be found in section 2.2.3. Here, a boolean value to track if an agent has

violated the distance rule has been added to the output data. In the data set which

stores the information related to airport performance, a new field named ’distance

violation count has been introduced which stores the violation count as a function

of time.

49

Arooba
Pencil
remove

Arooba
Pencil

3 Implementation

3.3.3 Implementation Of Di↵erent Distance Rules

In the implementation, five di↵erent rules have been introduced to observe the im-

pact of distances in the airport, i.e. d = (1, 1.25, 1.5, 1.75, 2) meter. These distances

are used between the di↵erent individual agents and between di↵erent groups. The

distances can be configured in the global variables. Once the parameter is set, all

the agents maintain the distance everywhere in the airport i.e. in the queue and

the rest of the airport area. Note that the distance between the agents in the same

group is kept at 0.25 meter.

3.3.4 Plotting The Simulation Output

To analyze the performance of the airport like distance violation count, data sets

need to be plotted. To achieve this, a python script has been written to generate the

graphs based on standard libraries like matplotlib and numpy. Matplotlib is a library

created for static, animated visualizations for python. It’s an open-source library

hosted in github[19]. Numpy is a python library that provides the multidimensional

array object and basic statistical operations [18]. The C++ code generates the

airport performance data set mentioned in Table 3.2. To take uncertainties in the

simulations into account, 100 repeated data sets have been generated. For the data

analysis, the 100 data sets have been stored in a list. In Listing 3.5, line from 19

to 22, it is presented how the distance rule violation count is extracted from the

CSV file for 2000 time steps. There is a separate list that contains the time steps

extracted from the same CSV file as the violation count (line number 14 to line

number 17). Using both lists, the graph for distance violation count with respect to

the time steps has been plotted.

1 countToReadTimeOnlyOnce = 0

2 counterForListIndex = 0

3 # iterating over all the files and storing the time steps in

4 # r_time list for once and distance violation count in

50

3 Implementation

Variable Name t = 1 t = 2 - t = 1999 t = 2000

agentDensityOutside 5 5 10 5
agentDensityLandside 0 0 0 5
agentDensityAirside 0 0 32 26
isEvacuating 0 0 0 0
agentsInSecurityQueue 0 0 15 10
distanceRuleViolationCount 0 0 20 22

Table 3.2: An example of the airport performance data set.

5 # different list.

6 for i in file_paths:

7 openFile = open(i, ’r’)

8 next(openFile)

9 lines = openFile.readlines ()

10 if len(lines) < 2000:

11 print(’error opening the file.’)

12 else:

13 if countToReadTimeOnlyOnce == 0:

14 for x in lines:

15 c = x.strip(’\n’) # remove line break at the end

of each line

16 a = int(c.split(’;’)[0])

17 r_time.append(a)

18 countToReadTimeOnlyOnce = countToReadTimeOnlyOnce + 1

counter to read the time steps only once.

19 for y in lines:

20 d = y.strip(’\n’)

21 a = int(d.split(’;’)[6])

22 accumulatedList[counterForListIndex]. append(a) #

appending distance violation count to the list.

23 counterForListIndex = counterForListIndex + 1 #

accumulated list contains the list of list ,

24 # counter is used

51

3 Implementation

25 # to refer the next inner list.

Listing 3.5: Python code snippet to extract information from csv all the files and

generate the graphs.

To plot the mean and standard deviation graph from the data set, the distance rule

count list has been converted to a numpy array because the numpy array provides

the in-built function mean() and std() that calculate mean and standard deviation

respectively. In the code, the sum and the di↵erence of mean and standard deviation

have been calculated and stored in a di↵erent array. Some negative values appeared

when subtracting the standard deviation from the mean. To eliminate these values,

as the graph should not go to negative values, a condition has been added that

replaces them with zero.

3.3.5 Automate The Simulation Process

To reduce manual e↵ort, a python script that triggers an .exe file generated by ABM

C++ code has been written. In Listing 3.6, line number 6, the source of the .exe file

has been passed with spawn rate and distance rule as parameters. The argument

passed from the python script is captured as command-line arguments in the C++

code. In Listing 3.7, line number 3 and 4, the command-line arguments are used to

assign them to the global variables.

1 import subprocess

2 # runs for the 100 times and triggers the .exe file

3 # with specified arguments , first argument is the number of

4 # timesteps and other is distance rule.

5 for i in range (1):

6 exe_command = "..\\ source \\repos \\ SATIEABM \\

AgentSimulationSATIE \\x64\\ Debug" \

7 "\\ AgentSimulationSATIE.exe 2000 1.5 "

52

3 Implementation

8 subprocess.run(exe_command)

Listing 3.6: Python code snippet shows the implementation of triggering the exe file.

1 // capturing the command line arguments and assinging it to the

global variable.

2

3 GlobalVariables :: totalTimeStepsToRunSimulation = std::stoi(argv

[1]);

4 GlobalVariables :: spaceBetweenIndividualAgents = std::stof(argv

[2]);

Listing 3.7: C++ code snippet shows the implementation of capturing the command

line argument in the C++ code.

53

4 Results

Chapter 3, shows the implementation of group dynamics and di↵erent distance rules.

This chapter describes the results obtained from the implementation of earlier men-

tioned features. The first section contains the result of group dynamics i.e. how

di↵erent group sizes take time to process all the required functionalities. The sec-

ond section describes the impact of di↵erent distance rules on airport performance.

The last section contains a modification of layout and how the changes in the layout

of the airport impact the distance rule violations.

4.1 Group Dynamics

The implementation of group dynamics has been motivated in Chapter 3 and pre-

sented in Section 3.1 of this work. In this Section, the results are visualized and

simulations without groups are compared with simulations with di↵erent sizes of

groups (Sgroups). To this end, a measure to compare those di↵erent simulations has

been introduced which is the time it takes a specific individual agent or group of

agents to move from the outside area to the gate in the example airport layout pre-

sented in Section 3.1.3. To take uncertainties into account, 100 repeated simulations

with t = 2000 time steps each have been performed with di↵erent group sizes. The

duration that the individual agents or groups spent in the airport has been averaged

over the number of individual agents or groups of agent which leads to 100 average

duration values per case. The di↵erent cases are presented in Table 4.1. The spawn

rate (Rspawn), the time interval between the spawning of agents, has been adjusted

54

4 Results

Case 1 2 3
Group size 1 4 8
Spawn rate 20 80 160
Number of groups formed 100 25 12
Average group duration 275 295 335

Table 4.1: Comparison between three simulation cases with di↵erent group sizes.
The average group duration is a mean value over 100 simulations and all
groups.

for the three cases to ensure a comparable total amount of agents in the airport

during all simulations. The respective number of groups (Ngroups) can be estimated

using the following equations:

Ngroups =
t

Rspawn
with Rspawn = 20 ⇤ (Sgroups) (4.1)

Figure 4.1: Box plots for each case of Table 4.1 and 100 simulations show the average
duration that agents ’exist’ in the airport. The black line above and
below the box are called as whiskers it show the spread of data, yellow
line in the box represents the median of the data, an outlier (black small
circle) is defined as a data point that is located outside the whiskers of
the box plot.

Fig. 4.1 represents the average duration over all groups with di↵erent sizes for 100

55

Arooba
Pencil

4 Results

simulations in each case. The result gives us an idea that when the group size is

smaller it takes the agents less time to process at the airport. For the group size

1, 100 individual agents were created over 2000 time steps and it takes the agents

in average 275 time steps to move from the spawn area to the gates. For the group

size 4, 25 groups were formed and it takes the agents in average 295 time steps to

reach the gates. For the group size 8, 12 groups were created and it takes in average

335 time steps to reach the gates. These values can also be found in Table 4.1.

The increase in duration happens because when larger groups process through the

check-in counters and security check counters, each member waits for other members

of the group to arrive at the exit point. Hence it causes larger groups to take more

time in the airport simulation as compared to smaller groups.

4.2 Distance Rules

All the above mentioned simulations with di↵erent group sizes, are performed with

the same distance of 0.25 meter between agents. In the following the group sizes

are randomized at spawning between 1 and 8 but the distances between agents are

varied between 1.5 and 2 meter. In all cases, the patience count of an agent is

randomly generated between 3 and 5.

56

4 Results

a) Number of distance rule violations. b) Mean & deviation graph.

Figure 4.2: Results of 100 repeated simulations with a distance rule of 1 meter.
Graphs shows the number of violations that happened over the 2000
time steps. On the y-axis, the number of violations can be observed for
a particular time step. Right: The red line shows the mean and the blue
lines across the border of the grey area is the +/- standard deviation.

100 simulations with 2000 time steps were performed to observe distance rule vio-

lations by all the agents in the 1-meter distance case for the airport layout presented

in Fig 2.13. The data can be visualized in a graph (please see Fig 4.2).

In Fig 4.2 b, mean and standard deviation graph for the same data set have been

plotted. The standard deviation measures the dispersion of the data set relative to

its mean. The standard deviation helps to predict the performance trends.

In Fig 4.3 we can see the results for the 1.5 and 2 meter distance cases for 100

simulation runs. Comparing the graphs, we observe for 1.5 meter distance rule

(Fig 4.3 a), that the violation count increased as compared to 1 meter distance

(Fig 4.2 b). For the 1.5 meter case, the distance violation count is near 20 whereas

for the 1 meter case the distance violation count is less than 10. This shows the trend

that as the distance increases, the agents tend to violate the rules more frequently.

As the distance increases from 1.5 meter to 2 meter, the violation count increases

subsequently. The mean and standard deviation graph is presented in Fig 4.3 b. In

the 2 meter case, the violation count is around 50 which is more as compare to the

other 2 cases i.e. 1 meter and 1.5 meter. As the distance increases, an agent tries

57

4 Results

to maintain the distance of 2 meter, there are chances where an agent is waiting

for other agents to move so that they can avoid the collision but due to the large

distance rule an agent is finding di�culty to get suitable route and they wait until

they find a new route. This ultimately increases their patience value and they are

forced to violate the distance rule.

a) 1.5 meter b) 2 meter

Figure 4.3: Mean & Deviation graphs of distance rule violations for 100 simulation
runs. The red line shows the mean and the blue lines across the border
of the grey area is the +/- standard deviation for the distance rule of
1.5 meter (left) and 2 meter (right).

58

4 Results

Figure 4.4: Comparison between the di↵erent distance rules. The black line above
and below the box are called as whiskers it show the spread of data,
yellow line in the box represents the median of the data, an outlier
(black small circle) is defined as a data point that is located outside the
whiskers of the box plot.

We can see the results from the box plot graph for di↵erent distance rules in

Fig 4.4. To see the results more clearly, two more distance rules have been intro-

duced, i.e. 1.25 meter and 1.75 meter. As the distance increases, the number of

violations are also increasing. In each case, the space to be maintained by an agent

is getting increased which causes more collisions. Note, from this results it can

be concluded that the number of violation increase exponentially as a function of

distance.

4.3 Layout modifications

To further test the abilities of the simulation code and to compare distance rule

violations under varying situations, layout modifications have been introduced in

the master thesis work. Fig 4.5 a), shows the simple layout without any complexity

59

4 Results

i.e. without any layout modification. In Fig 4.5 b), a layout with walls around

the FIDS has been created. As the complexity increases, there are chances of more

violations. From Fig 4.5 c) and Fig 4.5 d), we can observe the number of violations

over 2000 time steps for the simple layout and the complex layout at 1.5 meter

distance between the agents. The graph plotted for the simple layout has a smaller

number of violations of around 20-25 whereas for the complex layout, the violation

count goes up to 35 approximately.

If the airport layout complexity is increased, it also increases the violation count

because the agents have less space to move around the airport and when there are

more agents present in a small space at the same time, then there are more chances

of getting collisions. To avoid collision, an agent waits and when the patience level

increases, an agent may violate the rule.

60

4 Results

a) Simple layout b) Complex layout

c) Simple layout graph d) Complex layout graph

Figure 4.5: Comparison of distance rule violations between simple and complex lay-
out at 1.5 meter distance.

Fig 4.5b), shows quite artificial layout modifications, i.e. it just has walls around

the FIDS.

61

4 Results

Figure 4.6: Complex layout with more obstacles (yellow rectangles) which is called
’shop layout’.

Fig 4.6 shows a more realistic version of a complex layout. Obstacles such as

shops in landside area and airside area have been included in this work labelled in

yellow color. By implementing these shops in the layout, curb the space for the

agents to move. If there is less space to move, there are chances that the agents

will break the distance rule more frequently. To observe the trend of distance rule

violations between the simple layout (Fig 4.5 a), the FIDS layout (Fig 4.5 b) and

the shop layout (Fig 4.6), box plots have been plotted for 100 repeated simulations

of the three cases.

62

4 Results

Figure 4.7: Layout comparison between simple, FIDS and shop layout. The median
is given as black dotted line. The black line above and below the box
are called as whiskers it show the spread of data, yellow line in the
box represents the median of the data, an outlier (black small circle) is
defined as a data point that is located outside the whiskers of the box
plot.

Fig 4.7 shows the comparison between the three cases. In all the three cases, the

median value is the same. However, for the FIDS layout and the shop layout, there

are some extreme values, which show more distance rule violations compared to the

simple layout. These results suggest that the obstacles introduced in the layout

do not impact very much on the overall distance rule violations and thus on the

performance of the airport. But a trend can be derived that more complexity leads

to more extreme cases where agents need to wait for each other.

63

4 Results

a) Simulation run for group 1 b) Simulation run for group 2

c) Simulation run for group 3 d) Simulation run for group 4

Figure 4.8: Di↵erent movement of groups of agents across the complex airport lay-
out.

Finally, Fig 4.8 presents the movement of groups of agents across the complex

layout (shop layout) of the airport. As we can observe from each of the four figure

that groups of agents choose di↵erent paths to reach di↵erent gates. For the second

gate (Fig 4.8 a) and (Fig 4.8 c), di↵erent groups of agents choose di↵erent paths to

reach to the target. This comparison provides a summary of the main features that

have been introduced into the existing code in the course of this master thesis work,

i.e. groups of agents, exit points and layout modifications.

64

5 Conclusion

The following sections in this chapter provide the summary and achievements of this

research. Also, it provides an overview of the next steps that can be taken by the

team members who are expected to extend this simulation application.

5.1 Summary

The objective of this thesis research was to contribute to the ongoing project SATIE

and especially to the ABM in IPS. In this thesis ABM was used to simulate groups

of agents, their behaviour and how they stick together in each process at the airport,

allows us to understand and predict the behaviour of groups of agents, how di↵erent

group sizes impacts on the amount of time to complete the all process and formalities

at the airport.

Apart from that, this thesis contributes to analyse and study di↵erent distance

rules across the globe in the current pandemic situation. In a real life situation,

many factors can be taken into account. In crowded situations, people may tends to

violate this distance rule if the layout of an airport is complex. There are chances

that people do not respect the prescribed distance rule. In this thesis, we have found

that as the layout gets complex or the distance between the agents is increased then

there are more chances of distance rule violations.

This thesis gives an overview and impact of di↵erent distance rules. Our proposed

model can be customized, i.e. it can be used to analyse the di↵erent distance rules

and the layout can be enhanced with more complexity to observe the impact in

65

5 Conclusion

performance of the airport under varying conditions.

5.2 Outlook

An important aspect, that needs to be addressed in the future development of the

ABM presented in this work, is validation and verification. The existing code devel-

oped in the project SATIE has been partially verified by airport operators involved

in the project. However, the existing code and the group behaviour implementation

still need to be validated against data. In order to validate the simulations, the

plan was to validate it with real data sets collected in the o�ce infrastructure of

Fraunhofer EMI with people moving around the o�ce buildings. But due to COV

pandemic we had to change the original plans. Some open source data sets have been

reviewed in the course of this work but they did not o↵er the needed information

about group dynamics in airports. In this master thesis work, a manual approach

has been followed to analyse the results like by seeing the complete simulations for

all time steps and by observing any exceptional cases. The latter could be e.g. an

agent being stuck at some place of the airport like e.g. in a queue. But due to

the randomness of ABM, it is di�cult to analyse the actual root cause, i.e. in each

simulation run the behaviour of an agent is di↵erent and it is di�cult to exactly

repeat the simulation run. Hence, the simulation needs to be validated with actual

data sets. Still, the COV pandemic motivated the studying of distance rules and the

implementation of respective performance measures in ABM to quantify the impact.

Also the impacts of distance rules need to be validated against real-world data in

the future once they are available. Apart from this, the formation of groups can

be improved i.e. the groups of agents can be dynamically formed. If the groups

of agents are moving in a certain direction then other agents can adapt and join

the groups of agents, this approach is good when agents are evacuating the build-

ing where individual agents join the crowd and forms a big group of agents while

evacuating [5].

66

Bibliography

[1] Allan, R.J., et al.: Survey of agent based modelling and simulation tools. Sci-

ence & Technology Facilities Council New York (2010)

[2] Athanasiadis, I.N., Mitkas, P.A.: An agent-based intelligent environmental

monitoring system. Management of Environmental Quality: An International

Journal (2004)

[3] Augustijn, E.W.: Components of an agent based model, https://www.

futurelearn.com/info/courses/geohealth/0/steps/19290

[4] Bai, S., Raskob, W., Müller, T.: Agent based model. Radioprotection 55 (05

2020)

[5] Balboa, A., Cuesta, A., Alvear, D.: Measuring social influence and group

formation during evacuation process. Collective Dynamics 5, 238–245 (2020),

https://collective-dynamics.eu/index.php/cod/article/view/A56

[6] Belsare, A.V., Gompper, M.E., Keller, B., Sumners, J., Hansen, L., Millspaugh,

J.J.: An agent-based framework for improving wildlife disease surveillance: A

case study of chronic wasting disease in missouri white-tailed deer. Ecological

modelling 417, 108919 (2020)

[7] Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating

human systems. Proceedings of the national academy of sciences 99(suppl 3),

7280–7287 (2002)

67

https://www.futurelearn.com/info/courses/geohealth/0/steps/19290
https://www.futurelearn.com/info/courses/geohealth/0/steps/19290
https://collective-dynamics.eu/index.php/cod/article/view/A56

BIBLIOGRAPHY

[8] Castiglione, F.: Agent based modeling. Scholarpedia 1(10), 1562 (2006), revi-

sion #123888

[9] Chu, D.K., Akl, E.A., Duda, S., Solo, K., Yaacoub, S., Schünemann, H.J., El-

harakeh, A., Bognanni, A., Lotfi, T., Loeb, M., et al.: Physical distancing, face

masks, and eye protection to prevent person-to-person transmission of sars-cov-

2 and covid-19: a systematic review and meta-analysis. The Lancet 395(10242),

1973–1987 (2020)

[10] Chunlin He, He Xiao, Wen Dong, Liping Deng: Dynamic group behavior for

real-time multi-agent crowd simulation. In: 2010 The 2nd International Confer-

ence on Computer and Automation Engineering (ICCAE). vol. 1, pp. 544–546

(2010)

[11] Comission, E.: Security of air transport infrastructure of europe (2021), https:

//cordis.europa.eu/project/id/832969

[12] Crooks, A., Castle, C., Batty, M.: Key challenges in agent-based modelling

for geo-spatial simulation. Computers, Environment and Urban Systems 32(6),

417–430 (2008)

[13] Crooks, A., Heppenstall, A.: Introduction to Agent-Based Modelling, pp. 85–

105 (01 2012)

[14] Crooks, A., Heppenstall, A., Malleson, N.: Agent-Based Modeling (12 2017)

[15] Evans, D.A.: Agent based modelling: Introduction, http://www.geog.leeds.

ac.uk/courses/other/crime/abm/general-modelling/index.html

[16] Gigliotta, O., Miglino, O., Parisi, D.: Groups of agents with a leader. Journal

of Artificial Societies and Social Simulation 10(4), 1 (2007)

[17] Gilbert, N.: Agent-based models (2008), https://www.doi.org/10.4135/

9781412983259

68

https://cordis.europa.eu/project/id/832969
https://cordis.europa.eu/project/id/832969
http://www.geog.leeds.ac.uk/courses/other/crime/abm/general-modelling/index.html
http://www.geog.leeds.ac.uk/courses/other/crime/abm/general-modelling/index.html
https://www.doi.org/10.4135/9781412983259
https://www.doi.org/10.4135/9781412983259

BIBLIOGRAPHY

[18] Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen,

P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern,

R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del

R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K.,

Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array

programming with NumPy. Nature 585(7825), 357–362 (Sep 2020), https:

//doi.org/10.1038/s41586-020-2649-2

[19] Hunter, J.D.: Matplotlib: A 2d graphics environment. Computing in Science

& Engineering 9(3), 90–95 (2007)

[20] Jones, N.R., Qureshi, Z.U., Temple, R.J., Larwood, J.P., Greenhalgh, T.,

Bourouiba, L.: Two metres or one: what is the evidence for physical distancing

in covid-19? bmj 370 (2020)

[21] Kasereka, S., Kasoro, N., Kyamakya, K., Goufo, E.F.D., Chokki, A.P., Yengo,

M.V.: Agent-based modelling and simulation for evacuation of people from a

building in case of fire. Procedia Computer Science 130, 10–17 (2018)

[22] Kravari, K., Bassiliades, N.: A survey of agent platforms. Journal of Artificial

Societies and Social Simulation 18(1), 11 (2015)

[23] Lake, M.W.: Trends in archaeological simulation. Journal of Archaeological

Method and Theory 21(2), 258–287 (2014)

[24] Mackin, K.J., Tazaki, E.: Evolving intelligent multiagent systems using unsu-

pervised agent communication and behavior training. In: Smc 2000 conference

proceedings. 2000 ieee international conference on systems, man and cybernet-

ics. ’cybernetics evolving to systems, humans, organizations, and their complex

interactions’ (cat. no.0. vol. 4, pp. 2411–2414 vol.4 (2000)

[25] Naiem, A., Reda, M., El-Beltagy, M., El-Khodary, I.: An agent based approach

for modeling tra�c flow. pp. 1 – 6 (04 2010)

69

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

BIBLIOGRAPHY

[26] Ozik, J., Collier, N., Heiland, R., An, G., Macklin, P.: Learning-accelerated dis-

covery of immune-tumour interactions. Molecular systems design & engineering

4(4), 747–760 (2019)

[27] Pluchino, S., Tribulato, C., Caverzan, A., Quillan, A., Cimellaro, G., Mahin,

S.: Agent-based model for pedestrians’ evacuation after a blast integrated with

a human behavior model (04 2015)

[28] Salgado, M., Gilbert, N.: Agent Based Modelling, pp. 247–265 (11 2013),

https://www.researchgate.net/publication/259335210_Agent_Based_

Modelling

[29] Sample, I.: What is the science behind the UK’s coronavirus distanc-

ing rules? (2020), https://www.theguardian.com/world/2020/jun/10/

science-behind-coronavirus-distancing-rules-2-metre

[30] Schmidt, B.: The modelling of human behaviour: The PECS reference models.

SCS-Europe BVBA Delft (2000)

[31] Stroeve, S., Bosse, T., Blom, H., Sharpanskykh, A., Everdij, M.: Agent-based

modelling for analysis of resilience in atm (01 2013)

[32] Urban, C., Schmidt, B.: Pecs - agent-based modelling of human behaviour (01

2001)

[33] Wang, L., Ahn, K., Kim, C., Ha, C.: Agent-based models in financial market

studies. Journal of Physics: Conference Series 1039, 012022 (jun 2018), https:

//doi.org/10.1088/1742-6596/1039/1/012022

[34] Zarboutis, N., Marmaras, N.: Design of formative evacuation plans using agent-

based simulation. Safety Science 45(9), 920–940 (2007)

[35] Čertický, M., Drchal, J., Cuchý, M., Jakob, M.: Fully agent-based simula-

tion model of multimodal mobility in european cities. In: 2015 International

70

https://www.researchgate.net/publication/259335210_Agent_Based_Modelling
https://www.researchgate.net/publication/259335210_Agent_Based_Modelling
https://www.theguardian.com/world/2020/jun/10/science-behind-coronavirus-distancing-rules-2-metre
https://www.theguardian.com/world/2020/jun/10/science-behind-coronavirus-distancing-rules-2-metre
https://doi.org/10.1088/1742-6596/1039/1/012022
https://doi.org/10.1088/1742-6596/1039/1/012022

BIBLIOGRAPHY

Conference on Models and Technologies for Intelligent Transportation Systems

(MT-ITS). pp. 229–236 (2015)

71

	Contents
	List of Figures
	List of Tables
	Listing
	List of Abbreviations
	1 Introduction
	1.1 Project Context
	1.2 Motivation & Objectives
	1.3 Research Question
	1.4 Thesis Contribution
	1.5 Thesis Outline

	2 Background And Code Basis
	2.1 Agent Based Modelling
	2.1.1 What is an Agent?
	2.1.2 Benefits of Agent-Based Modelling
	2.1.3 Areas of Application
	2.1.4 Existing Toolkit Available

	2.2 Existing Code
	2.2.1 Path Finding Algorithm
	2.2.2 Collision Avoidance Algorithm
	2.2.3 Simulation Output
	2.2.4 Simulation Layout

	3 Implementation
	3.1 Group Dynamics
	3.1.1 Structure of Groups of Agents
	3.1.2 Agent ID & Group ID
	3.1.3 Group Behaviour

	3.2 Global variables
	3.3 Distance Rules
	3.3.1 Introduction
	3.3.2 Distance Rule Violations
	3.3.3 Implementation Of Different Distance Rules
	3.3.4 Plotting The Simulation Output
	3.3.5 Automate The Simulation Process

	4 Results
	4.1 Group Dynamics
	4.2 Distance Rules
	4.3 Layout modifications

	5 Conclusion
	5.1 Summary
	5.2 Outlook

	Bibliography

